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Abstract

Experimental and simulated adsorption equilibrium data were analyzed by different methods of least-squares regression. The methods used were
linear regression, nonlinear regression, and orthogonal distance regression. The results of the regression analysis of the experimental data showed
that the different regression methods produced different estimates of the adsorption isotherm parameters, and consequently, different conclusions
about the surface properties of the adsorbent and the mechanism of adsorption. A Langmuir-type simulated data set was calculated and several
levels of random error were added to the data set. The results of regression analysis of the simulated data set showed that orthogonal distance

regression gives the most accurate and efficient estimates of the isotherm parameters. Nonlinear regression and one form of the linearized Langmuir
isotherm also gave accurate estimates, but only at low levels of random error.
© 2008 Elsevier B.V. All rights reserved.
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. Introduction

Adsorption is the most commonly used technique for the
reatment of industrial wastewaters. Activated carbon has been
sed widely for the removal of many pollutants; however,
ctivated carbon is expensive and not easily regenerated [1].
herefore, low-cost adsorbents that are able to bind pollutants
ave been extensively tested [1–3]. Equilibrium relationships
etween adsorbent and adsorbate are described by adsorp-
ion isotherms, usually the relationship between the quantity
dsorbed and that remaining in solution at a fixed temper-
ture. These equilibrium adsorption isotherms are important
or the design of adsorption systems, and the constants of the
sotherms express the surface properties and the capacities of
he adsorbents. Although there are many adsorption isotherms
n the literature, the most widely used by researchers are two of
he oldest isotherms, namely Freundlich [4] and Langmuir [5]

sotherms.

The Freundlich isotherm can be used for non-ideal adsorp-
ion on heterogeneous surfaces. It is expressed by the following
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mpirical equation:

e = KFC1/n
e (1)

here KF is the Freundlich adsorption constant ((mg/g)(L/g)n)
nd 1/n is a measure of the adsorption intensity.

The development of the Langmuir isotherm assumes mono-
ayer adsorption on a homogenous surface. It is expressed as

e = (qmKaCe)/(1 + KaCe) (2)

here Ce is the equilibrium concentration (mg/L), qe the amount
dsorbed (mg/g), qm is qe for complete monolayer adsorption
apacity (mg/g), and Ka is the equilibrium adsorption constant
L/mg).

As an alternative to the BET method, the adsorption of dyes
rom aqueous solution has been used to determine the spe-
ific surface area (SSA) of many substances [6,7]. Assuming
hat the surface is homogenous and completely covered by dye

olecules, the SSA (m2/g) can then be related to the first layer
dsorption density (Γ m) as described in Eq. (3):
SA = ΓmNA (3)

here N is the Avogadro’s number (6.023 × 1023 molecules/
ol) and A is the apparent surface area occupied by one dye
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Nomenclature

A the apparent surface area occupied by one dye
molecule (m2)

C0 initial concentration of methylene blue (mg/L)
Ce equilibrium concentration of methylene blue

(mg/L)
Ka the equilibrium adsorption constant in Lang-

muir’s equation (L/mg)
KF Freundlich adsorption constant ((mg/g)(L/g)n)
Kn the equilibrium adsorption constant of the nth

layer (L/mg)
LR linear regression
m the weight of adsorbent
MLA multilayer adsorption isotherm
NLR nonlinear regression
ODR orthogonal distance regression
qe amount of adsorbate adsorbed at equilibrium

(mg/g)
qm the value of qe for complete monolayer adsorption

capacity (mg/g)
r2 coefficient of determination
S the sum of the squares of the residuals
SSA specific surface area (m2/g)
V the volume of adsorbate solution (L)
x the independent variable
y the dependant variable

Greek letters
β the regression parameters vector
Γ total adsorption density (mg/g)
Γ m the first layer adsorption density (mg/g)
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δi the error in xi

εi the error in yi

olecule. The total multilayer adsorption capacity (Γ , mg/g)
an be expressed by the following equation [8]:

= (ΓmK1Ce)/((1 − K2Ce)[1 + (K1 − K2)Ce]) (4)
here Γ m is the monolayer adsorption capacity (mg/g), Ce the
quilibrium MB concentration (mg/L), and K1 and K2 are the
quilibrium adsorption constants of the first and second layers
L/mg). It is noted that in case of monolayer adsorption K2 will

f
a
A
b

able 1
inearized forms of Freundlich and Langmuir isotherms

sotherm Nonlinear form L

reundlich qe = KFC1/n l

angmuir-I

angmuir-II qe = qmKaCe

1 + KaCe

angmuir-III
us Materials 158 (2008) 73–87

ave a value of zero, and Eq. (4) is reduced to the monolayer
angmuir isotherm of Eq. (2).

There is no linear transformation for the multilayer adsorp-
ion (MLA) isotherm, but Freundlich isotherm can be linearized
y taking the logarithm of both sides of Eq. (1), and also Lang-
uir isotherm can be linearized to at least three different linear

orms as shown in Table 1 [9]. Linear regression has been the
ost commonly used technique to determine the adsorption

sotherm parameters for Freundlich and Langmuir isotherms
or many years. Linear regression was the easy and practical
ay when it was first suggested several decades ago, but it has
ecome a custom principle nowadays [10] and is still widely used
n spite of the availability of micro-computers and advanced
tatistical software. The mathematical linearization of nonlin-
ar isotherm models leads to biased estimates of the isotherm
arameters [11–16], and therefore, some researchers apply iter-
tive nonlinear regression to determine the best fitting isotherm
odel and to evaluate its parameters [17–19]. However, nonlin-

ar regression is also not statistically correct because there are
xperimental errors in both the dependent and the independent
ariables in the isotherm equations.

.1. Least-squares regression

Least squares is arguably the most common method for fitting
ata to a model when there are errors in the observations [20].
or example, given the data pairs (xi, yi); i = 1,2, . . ., n, where
i is the independent variable and yi is the dependent variable,
uppose that xi and yi are related by a smooth, possibly nonlinear
unction f, i.e.,

i = f (xi; β) (7)

here β is the regression parameters vector. If the function is
inear, the relationship takes the form

i = β0 + β1x (8)

The above equations state that if y and x could be measured
ith no errors in either xi or yi, they would be exactly related.
ypical examples where this might be thought to be the case
ccur in the physical sciences when the variables are related by

undamental physical laws [21]. In classical least squares, it is
ssumed that xi is known exactly and yi is observed with error.
lthough it is often the case that xi have errors, these errors can
e safely ignored if they are much smaller than the corresponding

inear form Plot

og(qe) = log(KF) + 1

n
log(Ce) Log(qe) vs. log(Ce)

Ce

qe
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Ce
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rrors in yi. Thus, taking the error in yi to be given by εi, we write

i + εi = f (xi; β) (9)

We now seek the values of the parameters β that minimize
he sum of the squares of the residuals (S):

=
n∑

i=1

(yi − f (xi; β))2 (10)

his can be interpreted as minimizing the sum of the squares of
he vertical distances from the data points to the fitted curve.

If f(x) is linear in parameters, the solution is simple and
educes to a system of linear equations. However, when f(x)
s not linear in parameters, the solution is either performed as

general unconstrained optimization problem, or by an itera-
ive algorithm that is developed especially to solve least squares
roblems [22], such as the Gauss–Newton algorithm or the
evenberg–Marquardt algorithm.

Based on the Gauss–Markov theorem, least-squares regres-
ion makes various assumptions about the errors in a regression
odel. The basic assumptions are [20,23]:

1) The error, ε, is uncorrelated with x, the independence
assumption.

2) The error has the same variance (S2) across the different
levels of x, i.e. the variance of ε is homoskedastic and not
heteroskedastic.

3) The values of ε are independent of each other, i.e. not auto-
correlated or serially correlated.

4) The error is normally distributed.
5) The independent variable x is fixed, i.e. there is no measure-

ment error in x.

If these assumptions are met, then the estimates of the regres-
ion constant and the regression coefficients are unbiased and
fficient. Violation of one or more of these assumptions may
ead to biased and/or inefficient estimates.

.2. Effect of linearization

Linearization is used extensively in least-squares regression
nd model testing of experimental data, possibly because regres-
ion analysis of linear models can be carried out graphically
nd also because linear regression software is readily avail-
ble. Another reason that explains the affinity to linear models
s the simplicity of statistical estimation and hypothesis test-
ng. Algorithms for estimating parameters of linear models are
traightforward, direct solutions are available, and iteration is
ot required.

Unfortunately, linearization may lead to false conclusions
9–13,24–25], and the statistical tests used to check the good-
ess of fit will often not detect that the parameters are incorrect.
n other words, statistical tests performed to check the quality of

he fit between the data and the calculated curve can be mean-
ngless if they are performed using transformed data. Nonlinear
ransformation distorts the experimental error. Linear regres-
ion assumes that the vertical scatter of points around the line

m
m
s
o
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ollows a normal distribution, and that the standard deviation is
he same at every value of x. These assumptions are usually not
rue with the transformed data. A second problem is that some
ransformations alter the relationship between x and y. Since the
ssumptions of linear regression are violated, the results of lin-
ar regression are incorrect. The values derived from the slope
nd intercept of the regression line are not the most accurate
eterminations of the variables in the model [25].

.3. Dealing with errors in the independent variable x

It is not widely appreciated in the adsorption community that
special treatment of the least squares problem is required when

here is more than one observation having error per equation of
ondition. This is commonly referred to as the measurement
rror model or the errors-in-variables problem. Failure to for-
ulate the problem correctly may result in an asymptotically

iased estimator, even when fitting a straight line.
Orthogonal distance regression provides one method for fit-

ing these error-in-variables models. If the error in xi cannot be
gnored and δi denotes the error in xi, then Eq. (9) becomes

i + εi = f (xi + δi; β) (11)

nd it is reasonable to approximate the parameter β by minimiz-
ng the sum of the squares of the orthogonal distances from the
ata points to the curve yi = f(xi; β). As shown by Boggs et al.
26] this gives rise to the orthogonal distance regression (ODR)
roblem given by

in
β,δ

1

2

n∑
i=1

[(f (xi + δi; β) − yi)
2 + δ2

i ] (12)

ote that ODR is easily seen to be equivalent to

in
,δ,ε

1

2

n∑
i=1

ε2
i + δ2

i (13)

ubject to

i + εi = f (xi + δi; β), i = 1, . . . , n (14)

rom which it is easy to see that ODR is, indeed, minimizing
he sum of the squares of the orthogonal distances. In ordinary
east squares, we try to minimize the sum of the vertical squared
istances between the observed points and the fitted line. In
DR, we try to fit a line which minimizes the sum of the squared
istances between the observed points and the fitted line, as
easured perpendicular to that line.
In 1996, Schulthess and Dey published an article that

escribes a nonlinear least-squares regression analysis of the
angmuir equation that is based on minimizing the sum of the
ormal distance of the data to the isotherm [27]. The authors
ave noted that this regression method yields different Langmuir
onstants when compared with linear and nonlinear regression

ethods. However, they just pointed out that their regression
ethod should be less biased than linear and nonlinear regres-

ion methods and they did not give recommendation for using
ne method of regression, quoting “None of the regressions are
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ndorsed per se since they should all agree if the isotherm is
angmuirian”. This subject has not been investigated again, and

he work of Schulthess and Dey is rarely referenced in adsorption
iterature.

The objectives of this paper are (1) to demonstrate the dif-
erences in estimated isotherm parameters arising from the
pplication of different regression methods to the adsorption
quilibrium data, (2) to discuss the causes of these differences,
nd (3) to systematically assess the accuracy of predictions from
ifferent regression methods. For demonstration, the adsorption
f Methylene Blue (MB) onto Water Hyacinth (WH) is con-
idered. The methods applied are linear regression, nonlinear
egression, and orthogonal distance regression. A comparison
f the best fitting model and the predicted parameter values
btained from each method is presented. In order to assess the
ccuracy of each regression method in the presence of measure-
ent errors, simulated Langmuir-type data were simulated then

andom errors were added to the data set, the simulated data
ere subsequently analyzed by different least-squares regres-

ion methods, and the accuracy of predict isotherm parameters
ere compared.

. Materials and methods

.1. Adsorbent preparation

Live WH was collected from El-Mahmoudeya Canal,
lexandria, Egypt. Live WH consists of 94–95% water and
arely contains 50–60 g total solid/kg [28]. The plants were
horoughly washed with water, the roots were cut out and dis-
osed, and then the leaves and stems were left to dry in the
un for 14 days. In a recent publication, the sun-dried WH of
l-Mahmoudeya Canal near Alexandria was analyzed [29]. It
as found to contain 19% crude fiber, 18.2% ash, 21.1% crude
rotein, 1.0% crude lipids, and 40.7% nitrogen-free extract. In
he present study, the sun-dried WH was subjected to washing,
ulfonation, and chemical treatment with nitric acid to remove
oluble compounds and to alter the surface properties.

The sun-dried WH was soaked in 2 M nitric acid for 24 h.
he ratio of nitric acid solution to WH was 10 mL/g. It was then
ashed repeatedly with hot distilled water until the filtrate was

ree of nitrate. Sulfonated WH was obtained by heating at 70 ◦C
or 3 h with a solution containing 19 g/L sodium bicarbonate and
68 g/L sodium sulfite [30]. The ratio of sulfonation solution to
H was 10 mL/g. After sulfonation, it was washed repeatedly
ith hot 0.1 M HCl solution until the supernatant was free of

ulfate and magnesium. Washed WH was prepared by washing
he sun-dried WH repeatedly with hot distilled water at 80 ◦C
ntil the supernatant was free from magnesium. All types of
reated WH were subsequently dried at 105 ◦C for 24 h, then
round and sieved to particle size 0.20–0.315 mm, and stored in
dessicator.
.2. Methylene blue

Methylene blue (C16H18N3Cl·3H2O) was purchased from
igma–Aldrich and used without further purification. All MB

f
N
c
t
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olutions used in this study were prepared by weighing and
issolving the required amounts MB in distilled water.

.3. Isotherm experiments

Adsorption isotherms of MB at 40 ◦C were obtained at differ-
nt solution concentrations of MB and at the natural pH. The MB
olution was not buffered during isotherm experiments to avoid
he effect of buffering chemicals on the surface properties of WH
nd on the solution chemistry. All isotherm experiments were
onducted in 100 mL polyethylene bottles containing 0.1 g of

H and 50 mL of MB solution, which were placed in a thermo-
tatically controlled shaker operating at 150 rpm for 3 h. Initial
xperiments showed that 3-h shaking is enough to reach the equi-
ibrium state in all cases. The initial concentration of MB was
ltered from 50 to 1000 mg/L. The residual MB concentration
n solution after equilibrium was analyzed using Novaspec II
pectrophotometer (Pharmacia LKB) at wavelength of 655 nm.

.4. Numerical regression calculations

Linear, nonlinear, and orthogonal distance regression com-
utations were carried out using the statistical software
ATAPLOT [31] developed by NIST, the American National

nstitute for Statistics and Technology. DATAPLOT supports
rthogonal distance regression using the ODRPACK library
27,32]. ODRPACK uses a trust region Levenberg–Marquardt
ethod. The Levenberg–Marquardt method starts the calcu-

ations with the steepest descent method, and then gradually
hanges to Newton’s method when approaching the solution.

major advantage of ODRPACK is that its scaling algorithm
utomatically accommodates poorly scaled problems, in which
he model parameters and/or unknown errors in the independent
ariables vary widely in magnitude.

. Results and discussion

.1. Regression analysis of experimental isotherm data

.1.1. Nitric acid treated water hyacinth (NWH)
The experimental equilibrium data for the adsorption of MB

t 40 ◦C were fitted to Freundlich isotherm, Langmuir isotherm,
nd the multilayer adsorption Langmuir isotherm. The fitting
f experimental data to the isotherms was performed by the
ethods of linear regression (LR), nonlinear regression (NLR),

nd ODR. The different regression methods resulted in different
stimates of the parameters of adsorption isotherms as shown in
able 2 and Figs. 1 and 2.

The values of the Kf parameter of Freundlich isotherm esti-
ated from LR, NLR, and ODR are 32.636, 47.612, and 83.085,

espectively. Also the values of the n parameter are 2.706, 3.553,
nd 5.485, respectively. It is obvious that the differences in Kf
nd n are large and if it is required to use the Freundlich isotherm

or modeling the equilibrium of adsorption in the system MB-
WH, then it must be decided which regression method to

hoose for prediction of the isotherm parameters. By comparing
he values of the coefficient of determination, r2, it is found that
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Table 2
Isotherm parameters estimated by different methods of regression for the system MB-NWH at 40 ◦C

Isotherm model Regression results Isotherm model Regression results

Freundlich LR Langmuir-III
KF (mg/g)(L/g)n 32.636 (23.681–44.978) qm (mg/g) 222.78 (122.41–323.15)
n 2.706 (2.184–3.554) Ka (L/mg) 0.106 (0.0358–0.176)
r2 0.9587 R2 0.7512

Isotherm model Regression results Isotherm model Regression results

Freundlich NLR Langmuir NLR
KF (mg/g)(L/g)n 47.612 (23.09–72.136) qm (mg/g) 248.48
n 3.553 (2.306–4.780) Ka (L/mg) 0.0524
r2 0.9431 r2 0.9712
SS 2667 SS 1348.2

Isotherm model Regression results Isotherm model Regression results

Freundlich ODR Langmuir ODR
KF (mg/g)(L/g)n 83.085 (41.174–124.94) qm (mg/g) 266.63 (248.00–285.25)
n 5.482 (2.720–8.244) Ka (L/mg) 0.0327 (0.0198–0.0455)
SSy 668 SStotal 170.3

SSy 65.7

Isotherm model Regression results Isotherm model Regression results

Langmuir-I MLA NLR
qm (mg/g) 257.43 (244.32–271.96) Γ m (mg/g) 215.47
Ka (L/mg) 0.0758 (0.0347–0.128) K1 (L/mg) 0.0747
r2 0.9978 K2 (L/mg) 0.000330

r2 0.9805
SS 915.3

Isotherm model Regression results Isotherm model Regression results

Langmuir-II MLA ODR
qm (mg/g) 147.43 (94.139–339.72) Γ m (mg/g) 266.29 (247.57–285.01)
Ka (L/mg) 0.239 (0.188–0.330) K1 (L/mg) 0.0328 (0.0197–0.0458)
r2 0.9463 K2 (L/mg) 2.4 × 10−6

SStotal 170.7

V

t
r
i
c
t
t
N
t
i
(
s
f
w
fi
F
o
p
m
f

i
t
h

e
o
t
o
v
a
a
t
h
w
v
r

alues in parenthesis are 95% confidence interval of the estimate.

he LR method has an r2 value of 0.9587, which is higher than
2 of NLR, 0.9431. This might suggest that LR fits the exper-
mental data better than NLR, but the comparison here is not
orrect because in case of LR the r2 values are calculated from
he residuals of log qe while in NLR the residuals of qe are used
o calculate r2 value. Similarly, r2 cannot be used to compare
LR and ODR because ODR has residuals in both x and y direc-

ions. Therefore, the goodness of fit in case of ODR is presented
n Table 2 by means of the total sum of squared residuals, SStotal
x direction + y direction) and also by SSy in the y direction, i.e.
um of qe residuals. It is observed in Table 2 that SSy values
rom NLR (2667) is much higher than SSy from ODR (668)
hich indicates that the method of ODR gives predictions that
ts the experimental data better than NLR. A visual inspection of
ig. 1 shows that although the regression of the linearized form

2
f Freundlich isotherm results in a higher r value than NLR, the
redicted curve obtained from NLR passes closer to the experi-
ental results, especially at the higher end of Ce where the curve

rom LR deviates significantly from the experimental results. It

o
i
c

SSy 66.5

s also observed in Fig. 1 that the predicted curve from ODR fits
he experimental results better than LR and NLR, especially at
igh values of Ce.

Table 2 and Fig. 3 show the regression results of the three lin-
arized forms of Langmuir isotherm along with NLR and ODR
f experimental data on Langmuir isotherm. It is seen in Table 2
hat LR of the experimental data on the three linearized forms
f Langmuir isotherm, Langmuir I, II, and III, predicts different
alues for qm, 257.43, 147.43, and 222.78 mg/g, respectively. In
ddition, the predicted values of Ka from Langmuir I, II, and III
re 0.0756, 0.239, and 0.106 L/mg, respectively. It is also noticed
hat the 95% confidence intervals are quite different; Langmuir II
as the widest confidence interval of qm (94.139–339.72 mg/g)
hich demonstrates the high uncertainty of the estimate. The r2

alues are 0.9978, 0.9463, and 0.7512 for Langmuir I, II, and III,
espectively, but it is not appropriate to compare the goodness

f fit solely on the basis of r2 because the three linearized forms
nvolve different transformations of the x and y axis, leading to
hanges of the relative weights of data points and also to distor-
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ig. 1. Comparison of Freundlich isotherms estimated by different methods of
egression for the system MB-NWH at 40 ◦C (pH 4.1–4.5; NWH dosage: 2 g/L;
nitial MB concentration: 50–1000 mg/L; agitation rate: 150 rpm).

ion of the correlation. By visual inspection of Fig. 2 it is seen
hat the curve predicted from the linearized Langmuir I gives a
etter fit to the experimental results than Langmuir II and III.
t is interesting here to notice that although Langmuir III has
he lowest value of r2 (0.7512), its predicted curve passes much
loser to the experimental data points than the curve predicted
rom Langmuir II (r2 = 0.9463).
These discrepancies can be understood by examining the
ffects of the three linearization methods. In Langmuir I lin-
arization, Ce/qe is plotted against Ce so the x and y axis
n the plot are not independent, leading to strengthening of

ig. 2. Comparison of Langmuir and MLA isotherms estimated by different
ethods of regression for the system MB-NWH at 40 ◦C (pH 4.1–4.5; NWH

osage: 2 g/L; initial MB concentration: 50–1000 mg/L; agitation rate: 150 rpm).

h
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ig. 3. Comparison of Freundlich isotherms estimated by different methods of
egression for the system MB-WWH at 40 ◦C (pH 3.9–4.2; WWH dosage: 2 g/L;
nitial MB concentration: 50–1000 mg/L; agitation rate: 150 rpm).

orrelation. This is known as spurious correlation (i.e. the
bserved correlation is a “mathematical artifact” without a real
tatistical meaning) between originally independent variables,
t often occurs when the ratios between variables and/or the
og-transforms of the variables are used to build parametric rela-
ionships between the variables themselves [33,34]. On the other
and, Langmuir II linearization involves plotting 1/qe against
/Ce which leads to a reversal in the relative weights of data
oints and makes the results of LR very sensitive to errors at
ow values of qe (i.e. high values of 1/qe), giving the data points
f low qe extreme weights, and if the experimental error is ran-
om and independent of Ce then the relative error is expected
o be highest at the lowest values of qe, leading to biased esti-

ates from Langmuir II linearization method. The linearization
ethod Langmuir III involves ratios between the variables like
angmuir I, in this case the LR plot is qe/Ce against qe, but

he transformation of coordinates and the distortion of error
istribution leads to weakening of correlation compared to the
ntransformed correlation.

The results of fitting the experimental results to the Lang-
uir isotherm by NLR and ODR are also shown in Table 2 and
ig. 2. By comparing SSy it is obvious that ODR gives a bet-

er fit (SSy = 65.7) than NLR (SSy = 1348.2), this is confirmed
rom Fig. 2 where it is clear that the curve predicted from ODR
asses much closer to the experimental data points than the curve
redicted from NLR. It is also noticed in Table 2 that the 95%
onfidence intervals of the parameters estimated by ODR are
uch smaller than the results of NLR, indicating less statistical

ncertainty in the ODR results.
By fitting the experimental results to the MLA Langmuir
odel, it is found that the method of ODR clearly rejects the
ypothesis of multilayer adsorption because the value of the first
ayer adsorption capacityΓ m (266.29 mg/g) is almost exactly the
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ame as qm previously estimated by ODR (266.63 mg/g), and
lso because the value of the adsorption constant of the second
ayer, K2, is extremely small (2.41 × 10−6 L/mg) compared to
hat of the first layer, K1, which is estimated to be 0.0328 L/mg.
n the other hand, the results of NLR suggest the occurrence of
ultilayer adsorption because the estimated value of K2 is com-

arable to K1, 3.3 × 10−4 and 7.47 × 10−2 L/mg, respectively,
nd also the value of Γ m (215.47 mg/g) is significantly smaller
han qm previously estimated by NLR (248.48 mg/g). These
esults, however, are questionable because the 95% confidence
nterval of K2 contains the zero.

.1.2. Water-washed water hyacinth (WWH)
The regression results of adsorption equilibrium in the sys-

em MB-WWH at 40 ◦C are presented in Table 3. Values of Kf
nd n estimated from the three methods of regression are quite

ifferent from each other. The curves estimated from Freundlich
sotherm by LR, NLR, and ODR are shown in Fig. 3, where it can
e seen that the curve obtained from ODR fits the experimental
ata better than the curves from LR and NLR.

C
s
f
d

able 3
sotherm parameters estimated by different methods of regression for the system MB

sotherm model Regression results

reundlich LR

F (mg/g)(L/g)n 18.515 (13.903–24.6587)
1.988 (1.724–2.348)

2 0.9826

sotherm model Regression results

reundlich NLR

F (mg/g)(L/g)n 27.241 (14.276–40.206)
2.398 (1.873–2.993)

2 0.9764
S 1950

sotherm model Regression results

reundlich ODR

F (mg/g)(L/g)n 42.520 (21.422–63.618)
2.984 (2.201–3.767)

Stotal 702.9
Sy 381.4

sotherm model Regression results

angmuir-I

m (mg/g) 330.86 (282.00–400.19)

a (L/mg) 0.02507 (0.0155–0.0648)
2 0.9708

sotherm model Regression results Iso

angmuir-II ML

m (mg/g) 175.03 (112.13–398.66) Γ m

a (L/mg) 0.0749 (0.0622–0.094) K1
2 0.9693 K2

SS
SS

alues in parenthesis are 95% confidence interval of the estimate.
us Materials 158 (2008) 73–87 79

The general trend of the regression results of the three lin-
arized forms of Langmuir isotherm is similar to the case of
WH; Langmuir I gives the highest r2 value (0.9708) among

he linearized forms, while Langmuir III gives the lowest r2

alue (0.7272) but its estimated curve fits the experimental data
uch better than Langmuir II which has a relatively high r2

alue (0.9693), as shown in Fig. 4.
On comparing the Langmuir parameters estimated by NLR

nd ODR, it is found that unlike the case of NWH, the values
f qm are relatively close, 356.25 and 365.77 mg/g for NLR
nd ODR, respectively. Also the values of Ka are 0.0152 and
.0139 L/mg for NLR and ODR, respectively. An inspection of
ig. 4 shows that the curves estimated by NLR and ODR are
ery close and almost overlap in parts, but ODR fits the data
etter as indicated by its low SSy (36.45) compared to NLR
SSy = 932.1). This difference comes from the deviation at low

e values where the slope of the curve is large. The geometrical

hape of the curve portion with large slope creates conditions
or the vertical deviation to be much larger than the orthogonal
eviation. Therefore, the minimization of SSy in NLR was not

-WWH at 40 ◦C.

Isotherm model Regression results

Langmuir-III
qm (mg/g) 288.20 (170.90–405.56)
Ka (L/mg) 0.0321 (0.00949–0.0546)
R2 0.7272

Isotherm model Regression results

Langmuir NLR
qm (mg/g) 356.25 (307.95–404.56)
Ka (L/mg) 0.01521 (0.00948–0.0209)
r2 0.9887
SS 932.1

Isotherm model Regression results

Langmuir ODR
qm (mg/g) 365.77 (342.18–389.36)
Ka (L/mg) 0.01393 (0.01071–0.1716)
SStotal 130.3
SSy 36.45

Isotherm model Regression results

MLA NLR
Γ m (mg/g) 290.06 (156.01–424.10)
K1 (L/mg) 0.0215 (0.00255–0.0405)
K2 (L/mg) 3.905 × 10−4 (−4.7 × 10−4 to 0.00126)
r2 0.9903
SS 802.5

therm model Regression results

A ODR
(mg/g) 365.76 (331.43–400.09)

(L/mg) 0.01393 (0.00707–0.0208)
(L/mg) 2.69 × 10−8 (−4.84 × 10−4 to 4.84 × 10−4)

total 130.3

y 36.45
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Fig. 6. Comparison of Langmuir and MLA isotherms estimated by different
methods of regression for the system MB-9WH at 40 ◦C (pH 4.6–5.1; SWH
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ig. 4. Comparison of Langmuir and MLA isotherms estimated by different
ethods of regression for the system MB-WWH at 40 ◦C (pH 3.9–4.2; WWH

osage: 2 g/L; initial MB concentration: 50–1000 mg/L; agitation rate: 150 rpm).

s efficient as the minimization of SSy + SSx in ODR because a
mall shift in x direction leads to a large decrease in the vertical
eviation.

When NLR and ODR were used to fit the MLA model to the
xperimental data, the results in Table 3 show that ODR rejects
he hypothesis of multilayer adsorption, while NLR estimates

m to be 290.06 mg/g, much less than qm estimated from the
onolayer Langmuir isotherm to be 356.25 mg/g. Therefore,
he NLR results suggest that adsorption of MB on WWH occurs
y multilayer adsorption on a homogeneous surface, but this
onclusion is questionable because the 95% confidence limits
f K2 includes the zero.

ig. 5. Comparison of Freundlich isotherms estimated by different methods of
egression for the system MB-SWH at 40 ◦C (pH 4.6–5.1; SWH dosage: 2 g/L;
nitial MB concentration: 50–1000 mg/L; agitation rate: 150 rpm).
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osage: 2 g/L; initial MB concentration: 50–1000 mg/L; agitation rate: 150 rpm).

.1.3. Sulfonated water hyacinth (SWH)
Table 4 and Figs. 5 and 6 show the regression results of the

ystem MB-SWH at 40 ◦C. Unlike the cases of NWH and WWH,
imilar values of Freundlich parameters were estimated by LR,
LR, and ODR. The values of Kf estimated by LR, NLR, and
DR are 13.418, 15.943, and 17.212 (mg/g)(L/g)n, respectively.
he values of n are 2.119, 2.280, and 2.350 for LR, NLR, and
DR, respectively. This is seen graphically in Fig. 5 where the

stimated curves are very close at the lower and middle range
f Ce then the LR curve deviates at the higher end of Ce.

The results of the three linearized forms of the Langmuir
sotherm in Fig. 6 show the same trend as the cases of NWH and

WH; Langmuir I gives the highest r2 value (0.9499) among
he linearized forms, while Langmuir III gives the lowest r2

alue (0.6024) but its estimated curve fits the experimental data
uch better than Langmuir II which has a relatively high r2

alue (0.9487). The values of Ka and qm obtained from the three
inearized forms of Langmuir isotherms are quite different from
ach other as shown in Table 4.

The values of Ka and qm estimated by NLR and ODR dif-
er slightly, ODR giving a better fit to the experimental data as
ndicated by its SSy of 534 compared to SSy = 1439 of NLR.
esting the hypothesis of MLA by NLR and ODR gave the
ame indications given in the cases of NWH and WWH, i.e.
DR rejected the hypothesis while NLR accepts the hypothesis
ith high uncertainty in its results.
It is noticed in the regression results of SWH that none of the

egression methods produced isotherms parameters that describe
he data precisely. This may be due to experimental error (espe-
ially an influential outlier) or it may be due to the complexity of

he adsorption mechanism, which makes the adsorption system
nsuitable for modeling by simple isotherms.
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.1.4. Comparison of results of the different methods of
egression for the system MB-NWH

In this study, several regression methods were applied to the
xperimental equilibrium results. However, the usual practice
y researchers is to apply only one method of regression, and
ased on the results of this one method, the researcher proposes
model for the prediction of the adsorption behavior and also for

he design calculations and sizing of equipment. The purpose of
his discussion is to compare the results obtained from the differ-
nt methods of regression, and to find out if there are evidence
uggesting one method as the most reliable. For demonstration,
he regression results of the system MB-NWH are discussed;
he results of the systems MB-WWH and MB-SWH are more
r less similar.

If a researcher performs a linear regression and compares
he linearized Freundlich and Langmuir II (or Langmuir III)

sotherms, it would be concluded by comparing the values of
2 that the experimental results are fitted better by the Fre-
ndlich isotherm (r2 = 0.9587) compared to Langmuir II or III
r2 = 0.9463 and 0.7512, respectively). The researcher will sub-

m
t
i
s

able 4
sotherm parameters estimated by different methods of regression for the system MB

sotherm model Regression results

reundlich LR

F (mg/g)(L/g)n 13.418 (10.576–17.025)
2.119 (1.899–2.395)

2 0.9901

sotherm model Regression results

reundlich NLR

F (mg/g)(L/g)n 15.943 (6.7343–25.1510)
2.280 (1.738–2.822)

2 0.9747
S 1211

sotherm model Regression results

reundlich ODR

F (mg/g)(L/g)n 17.212 (5.289–29.132)
2.350 (1.673–3.026)

Stotal 1038
Sy 910.7

sotherm model Regression results

angmuir-I

m (mg/g) 272.71 (215.74–370.58)

a (L/mg) 0.01072 (0.00789–0.0135)
2 0.9499

sotherm model Regression results Iso

angmuir-II M

m (mg/g) 135.55 (88.64–288.06) Γ

a (L/mg) 0.06145 (0.0485–0.0838) K1
2 0.9487 K2

SS
SS

alues in parenthesis are the 95% confidence interval of the estimate.
us Materials 158 (2008) 73–87 81

equently conclude that the adsorption occurs as a multilayer
dsorption on a heterogeneous surface. But if by coincidence
he researcher uses the linearized Langmuir I formula instead of
angmuir II or III, the comparison will show that the experimen-

al results are best fitted by Langmuir I isotherm (r2 = 0.9978)
nd it would be concluded that the adsorption takes place as a
onolayer adsorption on a homogeneous surface.
Few researchers prefer to use NLR to avoid the compli-

ations occurring from linearization [9,11,17–19,35]. In this
ase the researcher will find that the Langmuir MLA isotherm
r2 = 0.9805) is a better fit to the experimental data than both
reundlich (r2 = 0.9431) and the monolayer Langmuir isotherm
r2 = 0.9712), the conclusion will be multilayer adsorption on a
omogeneous surface.

ODR is not used by researchers to analyze adsorption equilib-
ium data in spite of the fact that unlike LR and NLR, ODR is a

ethod that takes into consideration the presence of experimen-

al error in both x and y. The x axis in the adsorption isotherms
s Ce, which is determined experimentally by chemical analy-
is and is prone to several sources of error such as pipetting,

-SWH at 40 ◦C

Isotherm model Regression results

Langmuir-III
qm (mg/g) 212.94 (84.7380–341.20)
Ka (L/mg) 0.0239 (0.00158–0.0462)
R2 0.6204

Isotherm model Regression results

Langmuir NLR
qm (mg/g) 301.86 (255.08–378.64)
Ka (L/mg) 0.00716 (0.00278–0.0115)
r2 0.9700
SS 1439

Isotherm model Regression results

Langmuir ODR
qm (mg/g) 308.66 (245.13–372.20)
Ka (L/mg) 0.00677 (0.00319–0.0104)
SStotal 783.5
SSy 534.5

Isotherm model Regression results

MLA NLR
Γ m (mg/g) 235.11 (−20.477–490.70)
K1 (L/mg) 0.010621 (−0.00970–0.0309)
K2 (L/mg) 2.90 × 10−4 (−9.98 × 10−4 to 0.00158)
r2 0.9709
SS 1395

therm model Regression results

LA ODR

m (mg/g) 308.76 (146.41–471.11)
(L/mg) 0.00677 (2.15 × 10−4–0.00133)
(L/mg) 3.19 × 10−8 (−4.01 × 10−4 to 4.02 × 10−4)

total 783.5

y 534.2
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ilution, calibration of instruments, losses during separation of
dsorbent, etc. The y axis in adsorption isotherms is qe, which
s calculated from the formula:

e = (C0 − Ce)V

m
(15)

here C0 is the initial concentration of adsorbate (mg/L), V the
olume of adsorbate solution in the adsorption experiment (mL),
nd m is the weight of adsorbent (g). From Eq. (15), it can be
een that the error in measuring Ce affects qe but with a different
ign, i.e. a negative error in Ce leads to a positive error (with a
ifferent magnitude) in qe. It can also be seen that qe is prone
o additional sources of error in the measurement of C0, V, and
. Therefore, there is no basis for assuming that the error in
e is negligible compared to the error in qe, and consequently

he method used for regression of isotherm data should take the
rror in Ce into consideration.

.1.5. Analysis of regression residuals
The residuals from different regression methods used in

his study, LR, NLR, and ODR, were analyzed to identify
he type and mode of their distribution, and also to detect
heir possible deviations from the basic assumptions in the
ethod of least squares. The case of NWH is presented for
emonstration.

The assumption of homoskedasity is verified by plotting the
esiduals (qe(estimated) − qe(experimental)) versus Ce as shown in

b
p
a
m

Fig. 8. Normal probability plots of residuals from the different
he system MB-NWH at 40 ◦C (residuals from ODR are taken in the orthogonal
irection).

ig. 7. It is seen in the figure that values of the residuals are
ot correlated with the level of Ce, indicating homoskedastic
esiduals.

The assumption of normality is checked by the normal proba-
ility plots [36] (NPP) in Fig. 8 and by Tukey-lambda probability

lot correlation coefficient (PPCC) diagrams in Fig. 9. The NPP
re constructed by plotting the residual (error) against a nor-
al distribution. If the plotted points form a straight line then

methods of regression for the system MB-NWH at 40 ◦C.
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Fig. 9. Tukey-lambda probability plots correlation coefficient plots of resid

he residual distribution is actually normal. Departures from the
traight line indicate departures from the normal distribution.
y examining Fig. 8, it can be seen that the NPP of the resid-

als from NLR, Langmuir I, and MLA are not linear, while
he NPP of the residuals from ODR show a strongly linear
attern with only a minor deviation from linearity. The fact
hat the points in the upper and lower extremes of the ODR

v
a
λ

0

able 5
tatistics of errors in estimation of qm by different methods of regression

rror variance Statistic NLR ODR

q1 −0.34 −0.06
min −0.67 −0.62
median 0.50 −0.02
max 1.16 0.81
q3 0.90 0.22

q1 −0.25 −0.25
min −1.67 −0.57
median 0.75 −0.11
max 2.95 0.78
q3 0.91 0.43

0 q1 1.32 −0.79
min −0.06 −1.90
median 2.89 −0.46
max 5.70 2.26
q3 3.33 0.36

0 q1 2.53 0.22
min −0.87 −5.18
median 3.60 0.73
max 6.96 4.40
q3 4.50 1.04

1: first quartile, q3: third quartile, min: largest positive error, and max: largest negat
om the different methods of regression for the system MB-NWH at 40 ◦C.

lot do not deviate significantly from the straight-line pattern
ndicates that there are no significant outliers. This is further
onfirmed from the PPCC plot of ODR in Fig. 9. The high

alue of the maximum PPCC (0.9865) indicates little devi-
tion from linearity, while the value of the shape parameter
= 0.10 is close to the theoretical ideal normal distribution of
.14.

Langmuir I Langmuir II Langmuir III

−0.19 −7.38 −2.88
−0.58 −24.30 −8.55

0.14 5.14 1.64
0.65 22.46 6.39
0.27 8.74 1.65

−0.95 −24.30 −8.55
−1.24 −25.44 −8.59
−0.58 0.79 1.50

2.14 35.90 9.30
0.75 16.51 8.99

−0.69 −49.61 −5.12
−2.176 −83.78 −92.32

1.456 −10.17 2.84
3.423 120 19.91
1.951 34.23 16.72

0.84 −72.48 −5.93
−8.57 −86.48 −19.05

4.21 133.24 12.67
15.21 285.21 52.16

7.23 255.60 37.44

ive error.
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Although the maximum PPCC values of the three other
egression methods are all above the critical value 0.8970 for
data set of seven observations [37], all of them showed clear
eviations of their residuals from normality. NLR has a NPP
hat is skewed to the right, and its shape parameter λ equals 0.40
hich indicates a very long-tailed distribution. Langmuir I has
NPP which shows skewness in the center of the data range and
value of λ = 0.00 typical for a logistic distribution. MLA has

he highest value of PPCC of its residuals (0.9913) but the shape
f its NPP shows a linear pattern in the center of the data range
nd tails in the upper and lower extremes, a typical short tailed
istribution. Also, its value of λ = 1.5 is close to the theoretical
niform distribution (λ = 1.0).

.2. Regression analysis of simulated isotherm data
A typical isotherm data set consists of 5–10 points, with
o replication. In this study, an ideal Langmuir-type equi-
ibrium data set was generated using Eq. (2) with values of
m = 250.00 mg/g and Ka = 0.0500 L/mg. The values of qe were

F
2
s

ig. 10. Box plots for the error in estimation of qm by different methods of regress
ariance.
us Materials 158 (2008) 73–87

omputed for Ce values of 5, 10, 25, 50, 125, 250, and 450 mg/L.
egression analysis was applied to the simulated data by NLR,
DR, and linearized Langmuir I, II, and III methods. All the

egression methods performed equally good and estimated the
alues qm = 250.00 mg/g and Ka = 0.0500 L/mg, with absolutely
o error.

In order to test the sensitivity of the different regression meth-
ds to experimental errors, a random number generator was used
o generate independent random errors in both qe and Ce. The
evels of error variance studied were 2, 5, 10, and 20. The units
f error variance are the same as the units of qe and Ce. The
ame numerical values of variance were used for both qe and
e. After adding the random errors to qe and Ce, the values of
m and Ka were estimated by different methods of regression.
he errors in the estimated values were calculated as

Error =
[

estimated value − true value
]

× 100

true value

or each level of error variance, this procedure was repeated
0 times, and the distributions of %errors in estimates were
tatistically analyzed.

ion of a simulated adsorption equilibrium data set at different levels of error
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Table 6
Statistics of errors in estimation of Ka by different methods of regression

Error variance Statistic NLR ODR Langmuir I Langmuir II Langmuir III

2 q1 −6.26 −1.59 −3.90 −16.46 −10.10
min −8.59 −4.23 −10.77 −42.97 −24.41
median −5.89 0.63 −2.35 −16.37 −3.35
max 6.93 1.78 16.17 200.92 81.60
q3 3.86 0.82 5.34 33.77 19.71

5 q1 −7.79 −4.82 −14.06 −44.50 −27.80
min −21.40 −7.40 −23.55 −47.16 −34.57
median −7.05 −0.57 −0.39 −8.85 −10.11
max 15.23 3.13 16.17 200.86 81.63
q3 −4.74 0.65 6.56 177.39 59.24

10 q1 −21.06 −2.63 −33.22 −57.41 −43.76
min −39.62 −7.88 −37.58 −92.42 −124.76
median −13.86 −0.70 −17.76 132.16 −37.60
max −1.42 19.24 10.66 845.26 47.92
q3 −8.96 6.22 2.01 661.74 0.74

20 q1 −28.67 −10.78 −49.80 −89.88 −58.65
min −33.44 −32.26 −62.92 −124.76 −70.84
median −25.42 −8.68 −35.03 −53.01 −23.54
max 2.11 35.80 17.20 1273.29 1484.42
q3 −13.28 2.34 −25.04 391.10 84.26

q1: first quartile, q3: third quartile, min: largest positive error, max: largest negative error.

Fig. 11. Box plots for the error in estimation of Ka by different methods of regression of a simulated adsorption equilibrium data set at different levels of error
variance.
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The %errors in estimating qm at different levels of random
rror are shown in Table 5 and their box plots are in Fig. 10.
t is obvious that ODR is superior at all levels of error vari-
nce studied (2–20), with the median of the %error in qm
stimates always close to zero (−0.02–0.73%), and the val-
es of min and max (the minimum and maximum %errors in
stimated values) almost identical with opposite signs which
eans that estimate is unbiased. The LR of linearized Lang-
uir I gives better estimates of qm than NLR when the error

ariance is 2, while at higher levels of error variance (5 and
0) Langmuir I and NLR gave estimates of qm that are almost
qually precise, finally at the highest level of error variance
tudied, 20, NLR gives more precise estimates than Langmuir
as indicated by the values of q1 and q3 (the 25% and 75%
uartiles of the estimate distribution). It is noticed that qm
stimates of both NLR and Langmuir I become more biased
owards positive errors as the error variance is increased. The
stimated values of qm by LR of Langmuir II and III show
arge errors even at low levels of error variance. Langmuir II
ave the worst estimates with errors in predicting qm up to
85%.

The errors in estimating Ka are presented in Table 6 and their
ox plots in Fig. 11. It is noticed that LR of Langmuir II and
II predict values of Ka that deviate significantly from the true
alue even with the smallest value of error variance. This con-
rms that LR of Langmuir II and III are unreliable methods for
stimating the parameters of Langmuir isotherm. NLR gives bet-
er estimates of Ka at all levels of error variance, while ODR, as
sual, gives the most accurate estimates of Ka with the median
f the %error persistently close to zero unless in case of error
ariance = 20.

These results show that different estimated values of
sotherm parameters are estimated from linear, nonlinear, and
rthogonal distance regression. The differences in estimated
alues increase with increasing the experimental error. It was
ound that Langmuir I linearization method produced esti-
ates that are much more accurate then Langmuir II and

II.

. Conclusions

Based on the results of this study, it is not recommended to
se Langmuir II and III methods in the estimation of Langmuir
sotherm parameters. Nonlinear regression gives more accurate
stimates than LR by Langmuir I method, especially when the
xperimental error is large. The results of this study also show
hat orthogonal distance regression gives the most accurate esti-

ates of the isotherm parameters among the different methods
ompared. A further point to consider is that the challenge for
tting an equilibrium adsorption equation to data is not only

he regression method, but also the choice of the correct model
11]. In cases where simple models fail to fit the data adequately,
ore complex models could be tested [38,39]. The results of
he present study demonstrate the ODR is more robust than
LR, and therefore, it is expected that ODR would be a bet-

er alternative for fitting equilibrium data to complex isotherm
odels.
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